

First passage times reveal underlying free energy landscapes

Alice Thorneywork

at775@cam.ac.uk

Cavendish Laboratory, University of Cambridge

3rd September 2019

- 1. Motivation: Biological membrane transport
- 2. Experiments: Colloidal model channel system with controlled potential landscapes
- 3. First passage time distributions in a colloidal system
- 4. First passage time distributions in molecular systems

- 1. Motivation: Biological membrane transport
- 2. Experiments: Colloidal model channel system with controlled potential landscapes
- 3. First passage time distributions in a colloidal system
- 4. First passage time distributions in molecular systems

Free-energy landscapes govern biological phenomena

Adapted from: Hartl et al. *Nature* (2011), Chakraborty et al. *J. Phys. Chem.* (2017) Jovanovic-Talisman et al. Biophys. J. (2017), Alhadeff et al. Proc. Nat. Acad. Sci. (2017)

Example: Biological membrane transport

• Efficient and selective transport through a variety of pores and channels

• Mechanism of selective transport: size, shape, specific binding...?

Pictures adapted from Pietzsch, *Nature* (2004), Kim et al. *Nature* (2018), *Chemistry World* (Nov 2003),

Our experimental model for membrane transport

Biological channels

Microscale Colloidal model channel

Length scales~nm Timescales~ ns

Length scales~µm Timescales~ s

Molecular systems are difficult to visualise and directly manipulate...

...so consider a colloidal model system that is more experimentally accessible

Colloidal system offers full control over all key parameters

Experimental approach: colloids + microfluidics + optical tweezers

- Controlled channel structure
- Controlled interactions
- Resolved transport dynamics

 \rightarrow Explore links between structure/interactions and dynamics

- 1. Motivation: Biological membrane transport
- 2. Experiments: Colloidal model channel system with controlled potential landscapes
- 3. First passage time distributions in a colloidal system
- 4. First passage time distributions in molecular systems

First passage times are easy to observe with colloids

 First passage time = time it takes for a process to attain a certain value for the first time i.e. how long does it take a particle to exit a channel

Full first passage time distributions can be measured

Probability distribution of first passage times, $P(t_{FPT})$ = probability an event will happen for the first time after a certain elapsed time

Crucially,

P(t_{FPT}) sensitively linked to underlying free energy landscape

Does the shape of the first passage time distribution reveal details of the potential landscape?

Model channel system with four states

minima imposed with optical tweezers Count 10^4 10^3 10^2 10^1 10^2 10^1 10^2 10^1 10^2 10^1 10^2 10^1

2D histogram of particle positions

Potential landscapes with multiple

Potential landscape,

1

Left exit

[k_B

0

 $U(x) \sim -\ln(P(x))$

2

x (μm)

3

Right exit

О

0

0 0

o

4

with P(x) the probability distribution of particle positions

First passage distributions on a linear scale appear similar...

...but potential minima qualitatively change distributions

First passage time distributions in a 1D network

Short-time regime: $\ln P(t_{FPT}) \simeq (A - B - 1) \ln t + C$

Measurement of $P(t_{FPT})$ at short times \rightarrow number of states that must be crossed to exit

Li and Kolomeisky, J. Chem. Phys, (2013)

Short-time regime reflects number of potential minima

with P(t_{FPT}) ~ t^m scaling consistent with theory

Length of power law regime increases with ΔU

Short-time regime for m=2 distributions

All distributions exhibit a power-law regime, t^m, with m~2

 Length of power-law (linear) region increases with ∆U

Length of power law regime increases with ΔU

Short-time regime for m=2 distributions

- All distributions exhibit a power-law regime, t^m, with m~2
- Length of power-law (linear) region increases with ∆U

Length of power law regime scales linearly with ΔU

Length of power law regime scales with potential depth

→Residence time important
→Route to infer potential depth

- 1. Motivation: Biological membrane transport
- 2. Experiments: Colloidal model channel system with controlled potential landscapes
- 3. First passage time distributions in a colloidal system
- 4. First passage time distributions in molecular systems

Molecular example 1: biological pore transport

Data from Bayley group, University of Oxford Qing et al, Science (2018)

Molecular example 2: (un)folding of a DNA hairpin

Data from Ritort group, University of Barcelona Forns et al, Phys. Rev. Lett. (2009), Rico-Pasto, J. Chem. Phys. (2018)

Molecular example 2: (un)folding of a DNA hairpin

Data from Ritort group, University of Barcelona Forns et al, Phys. Rev. Lett. (2009), Rico-Pasto, J. Chem. Phys. (2018)

Universal behaviour of the FPT distribution

Mesoscale

'Y OF

Microscale

bioRxiv, 772830

Acknowledgements

Keyser Group, University of Cambridge

Ulrich Keyser

Yizhou Tan

Jannes Gladrow

Hagan Bayley & Yujia Qing, University of Oxford

Felix Ritort & Marc Rico-Pasto University of Barcelona

Anatoly Kolomeisky, *Rice University*

Ernest Oppenheimer Fund

